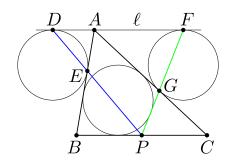
8TH GRADE

- **1.** In triangle ABC, point O is the circumcenter. The line AO intersects BC at point T, and the perpendiculars drawn from T to AB and AC intersect the radii OB and OC at points E and F, respectively. Prove that BE = CF.
- **2.** Given a triangle ABC, with a marked point I as its incenter, and K_1 and K_2 being the points of tangency of the incircle with sides BC and AC, respectively. Using a compass and a ruler, construct the incenter of triangle CK_1K_2 with the minimal possible number of lines (a line is a straight line or a circle).
- **3.** Let ABC be a right triangle ($\angle C = 90^\circ$), N be the midpoint of arc BAC of the circumcircle, and K the intersection point of CN with AB. On the extension of AK beyond K, let T be the point chosen such that TK = KA. Prove that the circle with center T and radius TK is tangent to BC.
- **4.** Let ABC be an acute triangle, AD, BE, and CF its altitudes, and H the orthocenter. On the rays AD, BE, and CF, points A_1 , B_1 , and C_1 chosen such that $AA_1 = HD$, $BB_1 = HE$, and $CC_1 = HF$ respectively. Let A_2 , B_2 , and C_2 be the midpoints of A_1D , B_1E , and C_1F , respectively. Prove that the points H, A_2 , B_2 , and C_2 lie on the same circle.
- **5.** Through vertex A of triangle ABC, a line $\ell \parallel BC$ is drawn. Two circles, each congruent to the incircle of triangle ABC, are tangent to the lines ℓ , AB, and AC as shown in the diagram. The lines DE and FG intersect at point P, which lies on BC. Prove that P is the midpoint of BC.

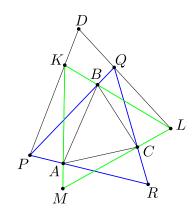


6. In an isosceles triangle ABC with $\angle BAC = 108^{\circ}$, the bisector of angle ABC intersects the circumcircle of the triangle at point D. Point E on segment BC is such that AB = BE. Prove that the perpendicular bisector of CD is tangent to the circumcircle of triangle ABE.

December 10, 2023

9TH GRADE

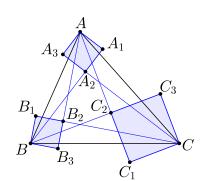
- **1.** In an acute triangle ABC, the altitudes BD and CE intersect at point H. A point F is chosen on side AC, such that $FH \perp CE$. Segment FE intersects the circumcircle of triangle CDE at point K. Prove that $HK \perp EF$.
- **2.** Let BC and BD be the tangents drawn from point B to the circle with diameter AC, and let E be the second intersection point of line CD with the circumcircle of triangle ABC. Prove that CD = 2DE.
- **3.** Given a triangle ABC, with a marked point I as its incenter, and K_1 and K_2 being the points of tangency of the incircle with sides BC and AC, respectively. Using a compass and a ruler, construct the center of the excircle of triangle CK_1K_2 that is tangent to CK_2 , using at most 4 lines (a line is a straight line or a circle).
- **4.** Let BE and CF be the altitudes of an acute triangle ABC, H its orthocenter, M the midpoint of BC, K and L the intersection points of the perpendicular bisector of BC with BD and CE, respectively, and Q the orthocenter of triangle KLH. Prove that Q lies on the median AM.
- **5.** Let I be the incenter of triangle ABC, and K the point of tangency of the incircle with side BC. Points X and Y are chosen on segments BI and CI, respectively, such that $KX \perp AB$ and $KY \perp AC$. The circumcircle of triangle XYK meets BC again at point D (other than point K). Prove that $AD \perp BC$.
- **6.** Around an acute triangle ABC, equilateral triangles KLM and PQR are constructed as shown in the diagram. Lines PK and QL intersect at point D. Prove that $\angle ABC + \angle PDQ = 120^{\circ}$.



December 10, 2023

10-11_{TH} Grade

- **1.** Circles ω_1 and ω_2 are tangent to a line ℓ at points A and B, respectively, and are tangent to each other externally at point D. A point E is chosen arbitrarily on the minor arc BD of circle ω_2 . The line DE meets circle ω_1 at point C for the second time. Prove that $BE \perp AC$.
- **2.** Let *I* be the incenter of triangle ABC, where $\angle A = 60^{\circ}$, and let *D* be the point of tangency of the incircle with side BC. Points *X* and *Y* are chosen on segments BI and CI, respectively, such that $DX \perp AB$ and $DY \perp AC$. A point *Z* is chosen such that triangle XYZ is equilateral, and points *Z* and *I* lie on the same side of line XY. Prove that $AZ \perp BC$.
- **3.** Given an acute triangle ABC. Squares $AA_1A_2A_3$, $BB_1B_2B_3$, and $CC_1C_2C_3$ are positioned such that the lines A_1A_2 , B_1B_2 , and C_1C_2 pass through points B, C, and A, respectively, and the lines A_2A_3 , B_2B_3 , and C_2C_3 pass through points C, A, and B, respectively. Prove that



- a) the lines AA_2 , B_1B_3 , and C_1C_3 are concurrent;
- b) the lines AA_2 , BB_2 , and CC_2 are concurrent.
- **4.** On a semicircle with diameter AB, a point C is chosen arbitrarily. Let P and Q be points on segment AB such that AP = AC and BQ = BC, and let O and H be the circumcenter and orthocenter of triangle CPQ, respectively. Prove that for all possible positions of point C, line OH passes through a fixed point.
- **5.** Given a scalene triangle ABC, with the incenter I marked, and the points of tangency of the incircle with sides BC, AC, and AB marked as K_1 , K_2 , and K_3 , respectively. Using only a ruler, construct the circumcenter of triangle ABC.
- **6.** Given a scalene triangle ABC. Through point B, a line ℓ is drawn that does not intersect the triangle and forms distinct angles with sides AB and BC. Let M be the midpoint of AC, and let H_a and H_c be the feet of the perpendiculars drawn from points A and C to ℓ . The circumcircle of triangle MBH_a intersects AB at point A_1 , and the circumcircle of triangle MBH_c intersects BC at point C_1 . Point C_2 is symmetric to C with respect to point C_1 . Prove that the lines C0, and C1 are concurrent.

December 10, 2023