8TH GRADE

1. In triangle *ABC*, point *O* is the circumcenter. The line *AO* intersects *BC* at point *T*, and the perpendiculars drawn from *T* to *AB* and *AC* intersect the radii *OB* and *OC* at points *E* and *F*, respectively. Prove that $BE = CF$.

(*Oleksii Karlyuchenko*)

Solution. Let *AD* be the diameter of the circumcircle of triangle *ABC* (Fig. 1). Then *BD* \perp *AB* and *TE* \perp *AB*, which implies *TE* \parallel *BD*. Triangle *OBD* is isosceles $(OB = OD \text{ as radii}).$ If $∠OBD = ∠ODB = \alpha$, then $∠OET = ∠OTE = \alpha$, so $OE = OT$ and $BE = OB - OE = OD - OT = DT$. Similarly, $CF = DT$, hence $BE = CF$.

2. Given a triangle ABC , with a marked point I as its incenter, and K_1 and K_2 being the points of tangency of the incircle with sides BC and AC , respectively. Using a compass and a ruler, construct the incenter of triangle CK_1K_2 with the minimal possible number of lines (a line is a straight line or a circle).

(*Hryhorii Filippovskyi*)

Solution. Clearly, that a single line is insufficient for the construction. Draw two lines: the incircle of triangle ABC (with center I and radius IK_1) and the segment *CI*. Let these intersect at point D (Fig. 2). We will show that D is the incenter of triangle $\mathit{CK}_1\mathit{K}_2$. Indeed, D lies on the angle bisector of $\angle C$, so it suffices to prove that K_2D is the angle bisector of $\angle{CK_2K_1}$. Let $\angle{ACB} = 2\alpha$. Since CI is the angle bisector, triangle CIK_2 is right-angled, and triangles K_2ID and CK_1K_2 are isosceles, step by step, we find

$$
\angle CIK_2 = 90^\circ - \alpha, \ \angle IK_2D = 90^\circ - \frac{1}{2}\angle CIK_2 = 45^\circ + \frac{\alpha}{2},
$$

$$
\angle CK_2D = 90^\circ - \angle IK_2D = 45^\circ - \frac{\alpha}{2} = \frac{1}{2}\angle CK_2K_1,
$$

which completing the proof.

3. Let *ABC* be a right triangle ($\angle C = 90^\circ$), *N* be the midpoint of arc *BAC* of the circumcircle, and K the intersection point of CN with AB . On the extension of *AK* beyond *K*, let *T* be the point chosen such that $TK = KA$. Prove that the circle with center T and radius TK is tangent to BC .

(*Mykhailo Sydorenko*)

Solution.

Draw $TD \perp BC$ and $TE \perp AC$ (Fig. 3). It suffices to prove that $TD = TK$. Since KE is the median of the right triangle *AET*, drawn to the hypotenuse, we have $KE = TK = KA$, and since TDCE is a rectangle, $TD = CE$. It remains to prove that $KE = CE$. Let $\angle BAC = 2\alpha$. Then $\angle BNC = 2\alpha$, implying $\angle BCN = \angle CBN = 90^\circ - \alpha$, $\angle KCE = 90^\circ - \angle BCN = \alpha$, $\angle KEA = 2\alpha$ and \angle *CKE* = \angle *KEA* - \angle *KCE* = α = \angle *KCE*. Thus, triangle KEC is isosceles, completing the proof.

Fig. 3

4. Let ABC be an acute triangle, AD, BE, and CF its altitudes, and H the orthocenter. On the rays AD, BE , and CF , points $A_1, B_1,$ and C_1 chosen such that $AA_1 = HD$, $BB_1 = HE$, and $CC_1 = HF$ respectively. Let A_2 , B_2 , and C_2 be the midpoints of A_1D , B_1E , and C_1F , respectively. Prove that the points H , A_2 , B_2 , and *²* lie on the same circle.

(*Mykhailo Barkulov*)

Solution.

Let *O* be the circumcenter of triangle *ABC*. Extend the altitudes and mark points H_1, H_2 , and H_3 such that DH_1 = DH , EH_2 = EH , and $FH_1 = FH.$ (Fig. 4). Then A_2 is the midpoint of both segments A_1D and AH_1 . The right triangles BDH and $BDH_{\rm 1}$ are congruent by two legs. Hence $\angle BH_1A = \angle BHD = 90^\circ - \angle HBC = \angle BCA$, so point H_1 lies on the circumcircle of triangle ABC. Therefore, the perpendicular bisector of *AH*₁ passes through *O*, implying $\angle HA_2O = 90^\circ$. Similarly, $\angle HB_2O = 90^\circ$ and $\angle HC_2O = 90^\circ$. Thus, the points H , A_2 , B_2 , C_2 , and O lie on a circle with diameter *HO*. Fig. 4

5. Through vertex A of triangle ABC, a line *ℓ* \parallel *BC* is drawn. Two circles, each congruent to the incircle of triangle *ABC*, are tangent to the lines ℓ , AB , and AC as shown in the diagram. The lines *DE* and *FG* intersect at point *P*, which lies on *BC*. Prove that *P* is the midpoint of *BC*. (*Mykhailo Plotnikov*)

Solution. Let *I* be the incenter of triangle *ABC*, *K* and *L* the points of tangency of this circle with sides AB and AC , and O_1 and O_2 the centers of the two other circles from the problem statement (Fig. 5). Since $AD = AE$ as tangents drawn from a single point to a circle, $\angle ADE = \angle AED$. But $\angle ADE = \angle BPE$ (corresponding angles with parallel lines) and $\angle AED = \angle BEP$ (vertical angles). Hence $\angle BEP = \angle BPE$, triangle *BPE* is isosceles, and *BP* = *BE*. Similarly, $CP =$ CG , so it suffices to establish that $BE = CG$.

The right triangles O_1AE and *IBK* are congruent by a leg and an acute angle $(O_1 E = IK$ as radii of congruent circles, $\angle O_1 AE = \frac{1}{2} \angle DAE = \frac{1}{2} \angle PBE = \angle IBK$. Thus, $AE = BK$, and consequently $BE = AB - AE = AB - BK = AK$. Similarly, $CG = AL$, and noting that $AK = AL$ as tangents from a single point, the proof is complete.

Fig. 5

6. In an isosceles triangle *ABC* with $∠BAC = 108°$, the bisector of angle *ABC* intersects the circumcircle of the triangle at point D . Point E on segment BC is such that $AB = BE$. Prove that the perpendicular bisector of CD is tangent to the circumcircle of triangle *ABE*.

(*Bohdan Zheliabovskyi*)

Solution. The base angles of isosceles triangle ABC are $\angle ABC = \angle BCA = 36^\circ$. Let O be the circumcenter of triangle ABC and ℓ the perpendicular bisector of CD (Fig. 6). From the isosceles triangle *ABE*, we find $\angle AEB = 90^\circ - \frac{1}{2} \angle ABC = 72^\circ$. Also, $\angle AOB = 2\angle ACB = 72^\circ$, since the central angle is twice the inscribed angle. Hence, the circumcircle of triangle ABE passes through point *O*. The line ℓ also passes through point *O*. We will show that ℓ is tangent to the circumcircle of triangle *ABE* at this point.

Since $\angle ACD = \angle ABD = \frac{1}{2} \angle ABC = 18^\circ$ and $\angle BCD = \angle BCA + \angle ACD = 54^\circ$, \Box we have *∠ABC* + *∠BCD* = \Box 90°. Thus, *AB* \bot *CD*, and therefore $\ell \parallel AB$. But triangle AOB is isosceles, so the tangent to its circumcircle at point O is parallel to AB , implying that this tangent is the line ℓ .

Fig. 6

9TH GRADE

1. In an acute triangle *ABC*, the altitudes *BD* and *CE* intersect at point *H*. A point *F* is chosen on side *AC*, such that $FH \perp CE$. Segment *FE* intersects the circumcircle of triangle *CDE* at point *K*. Prove that $HK \perp EF$.

(*Matthew Kurskyi*)

Solution.

Points D and E lie on the circle with diameter $BC.$ By the problem statement, point K also belongs to this circle, so $\angle KDB = 180^\circ -$ *∠KEB* = ∠*KEA* (Fig. 1). Since *FH* ⊥ *CE* and $AB \perp CE$, it follows that $FH \parallel AB$. Hence, $\angle HFE = \angle KEA$. Therefore, $\angle HFE =$ ∠*KDB*, and quadrilateral *DFKH* is cyclic. Thus, \angle *FKH* = 180[°] − \angle *HDF* = 90[°], which means $HK \perp EF$.

Fig. 1

2. Let *BC* and *BD* be the tangents drawn from point *B* to the circle with diameter AC , and let E be the second intersection point of line CD with the circumcircle of triangle ABC . Prove that $CD = 2DE$.

(*Matthew Kurskyi*)

Solution.

Let O be the midpoint of AC and F the intersection point of BO with CD (Fig. 2). The right triangles OBC and OBD are congruent by three sides ($OC = OD$ as radii, $BC = BD$ as tangents), so BF is the angle bisector, altitude, and median of isosceles triangle *CBD*. The right triangles ACB and EFB are similar, since $\angle FEB = \angle CEB = \angle CAB$. Since *BO* is the median of triangle ACB and $\angle OBC = \angle DBF$, it follows that BD is the median of triangle *EFB.* Hence, $CF = FD = DE$, and thus $CD =$ *2DE.* Fig. 2

3. Given a triangle ABC , with a marked point I as its incenter, and $K^{}_1$ and $K^{}_2$ being the points of tangency of the incircle with sides *BC* and *AC*, respectively. Using a compass and a ruler, construct the center of the excircle of triangle CK_1K_2 that is tangent to $\mathit{CK}_2^{}$, using at most 4 lines (a line is a straight line or a circle). (*Hryhorii Filippovskyi and Volodymyr Brayman*)

Solution.

First, draw two lines: the incircle of triangle ABC (with center I and radius IK_1) and the line *CI*. Let these intersect at points *D* and *E*, where $CD \leq CE$ (Fig. 3). We will show that D is the center of the incircle of triangle $\mathit{CK}_1\mathit{K}_2$. Indeed, denote the center of the incircle by D' . Point D' lies on *CI*, and since *I* is the midpoint of the arc $K_1 K_2$ of the circumcircle of triangle $CK_1 K_2$, by the "Incenter lemma", we have $ID' = IK_2 = IK_3$. Thus, points *D* and *D'* coincide. Since $\angle DK_2^{\mathsf{T}}E = 90^\circ, K_2^{\mathsf{T}}E$ is the angle bisector of the exterior angle at vertex K_2 of triangle CK_1K_2 . Next, draw two more lines: EK_2 and K_1D . Their intersection gives the required Fig. 3

Note. Point E is the center of the excircle of triangle CK_1K_2 that is tangent to $K_1 K_2$.

4. Let *BE* and *CF* be the altitudes of an acute triangle *ABC*, *H* its orthocenter, M the midpoint of *BC*, *K* and *L* the intersection points of the perpendicular bisector of *BC* with *BD* and *CE*, respectively, and *Q* the orthocenter of triangle *KLH*. Prove that *Q* lies on the median *AM*.

(*Bohdan Zheliabovskyi*)

Solution.

Triangles ABC and HLK are similar because the corresponding sides of these triangles are perpendicular, and therefore their corresponding angles are equal. Let AD and HP be the altitudes of these triangles, drawn to *BC* and *KL*, respectively, and let Q' be the intersection point of $\overline{A}M$ with HP (Fig. 4). To show that Q and Q' coincide, it suffices to prove that HQ' : $Q'P = AH$: HD . Since the right triangles $AQ'H$ and $MQ'P$ are similar, HQ' : $Q'P = AH : MP$. It remains to observe that $MP = HD$, because $MPHD$ is a rectangle. Fig. 4

5. Let *I* be the incenter of triangle *ABC*, and *K* the point of tangency of the incircle with side *BC*. Points *X* and *Y* are chosen on segments *BI* and *CI*, respectively, such that $K X \perp AB$ and $K Y \perp AC$. The circumcircle of triangle XYK meets *BC* again at point *D* (other than point *K*). Prove that $AD \perp BC$. (*Matthew Kurskyi*)

Solution. Let $K X$ and $K Y$ intersect AB and AC at points E and F , respectively, and let AH be the altitude of triangle ABC (Fig. 5). We will show that points X, Y, K, H lie on the same circle. This will imply that points D and H coincide. The right triangles *BEX* and *BKI* are similar, so $\frac{BX}{BI} = \frac{BE}{BK} = \cos B = \frac{BH}{BA}$. Hence, $BX : BH = BI : BA$, which means triangles $BH\ddot{X}$ and $\ddot{B}AI$ are similar by two sides and the included angle. Thus, $\angle BHX = \angle BAI = \frac{A}{2}$. Similarly, $\angle CHY = \frac{A}{2}$, so $\angle XHY = 180^\circ - \angle BHX - \angle CHY = 180^\circ - A$. From quadrilateral AEKF, we find $\angle XKY = \angle EKF = 180^\circ - A = \angle XHY$, so points *X*, *Y*, *K*, *H* lie on the same circle, completing the proof.

Fig. 5

6. Around an acute triangle ABC, equilateral triangles KLM and PQR are constructed as shown in the diagram. Lines PK and QL intersect at point *D*. Prove that $\angle ABC + \angle PDQ = 120^\circ$.

(*Yurii Biletskyi*)

Solution. Since $\angle APB = \angle AKB = 60^\circ$, quadrilateral $APKB$ is cyclic, and similarly, quadrilateral $BQLC$ is cyclic. Let the circles circumscribed around these quadrilaterals intersect at points *B* and *O* (Fig. 6). Then $\angle AOB = 120^\circ$. We will

show that quadrilateral *PDQO* is cyclic. Indeed, let $\angle POA = \angle PKA = \alpha$ and $\angle BOQ = \angle BLQ = \beta$. Then

$$
\angle POQ = \angle AOB - \angle POA + \angle BOQ = 120^{\circ} - \alpha + \beta,
$$

$$
\angle PDQ = \angle PKL - \angle KLQ = 60^{\circ} + \alpha - \beta,
$$

 $hence \angle POQ + \angle PDQ = 180^\circ$. Now,

$$
\angle ABC + \angle PDQ = \angle ABO + \angle OBC + \angle PDO + \angle ODQ =
$$

=
$$
\angle APO + \angle OQC + \angle PQO + \angle OPQ =
$$

=
$$
\angle APQ + \angle PQC = 60^{\circ} + 60^{\circ} = 120^{\circ}.
$$

Fig. 6

10-11TH GRADE

1. Circles ω_1 and ω_2 are tangent to a line ℓ at points A and B, respectively, and are tangent to each other externally at point D . A point E is chosen arbitrarily on the minor arc *BD* of circle ω_2 . The line *DE* meets circle ω_1 at point *C* for the second time. Prove that $BE \perp AC$.

(*Yurii Biletskyi*)

Solution. Let $O^{}_1$ and $O^{}_2$ be the centers of circles $\omega^{}_1$ and $\omega^{}_2$, respectively, and let F be the intersection point of lines AC and BE (Fig. 1). We will show that points A, B, D , and *F* lie on the same circle. Indeed, in the isosceles triangles $O₁CD$ and O_2 *DE*, we have ∠ O_1 *DC* = ∠ O_2 *DE* as vertical angles, thus ∠ $CO_1D = \angle DO_2E$. Therefore,

$$
\angle CAD = \frac{1}{2}\angle CO_1D = \frac{1}{2}\angle DO_2E = \angle DBE,
$$

which implies *∠FAD* = ∠*FBD*, and quadrilateral *ABDF* is cyclic.

Since $\overline{AO}_1 \parallel \overline{BO}_2$, it follows that $\angle A\overline{O}_1D + \angle BO_2D = 180^\circ$. From the isosceles triangles $AO₁D$ and $BO₂D$, we find

$$
\angle O_1DA + \angle O_2DB = (90^\circ - \frac{1}{2}\angle AO_1D) + (90^\circ - \frac{1}{2}\angle BO_2D) = 90^\circ.
$$

Hence, $\angle ADB = 90^\circ$, and therefore $\angle AFB = 90^\circ$.

Solution 2. Let the homothety centered at *D*, which maps circle ω_2 onto circle ω_1 , map radius $O^{}_2$ B to radius $O^{}_1$ G (Fig. 2). This homothety maps triangle BED to triangle *GCD*, so *GC* \parallel *BE*. Since O_2B \parallel O_1A and O_2B \parallel O_1G , we have $G-O_1-A$ as a diameter of circle ω_1 . Thus, $AC \perp GC$, which implies $AC \perp BE$.

2. Let *I* be the incenter of triangle *ABC*, where $\angle A = 60^\circ$, and let *D* be the point of tangency of the incircle with side *BC*. Points *X* and *Y* are chosen on segments *BI* and *CI*, respectively, such that $DX \perp AB$ and $DY \perp AC$. A point

Z is chosen such that triangle XYZ is equilateral, and points Z and I lie on the same side of line *XY*. Prove that $AZ \perp BC$.

(*Matthew Kurskyi*)

Solution. Let the incircle of triangle ABC touch sides AC and AB at points E and *F*, respectively (Fig. 3). Since $CI \perp ED$, point *Y* is the orthocenter of triangle *DEC*. Thus, $EY \perp BC$ and $ID \perp BC$, which implies $EY \parallel ID$. Similarly, $EI \parallel YD$, so *EIDY* is a parallelogram, and $\overrightarrow{EY} = \overrightarrow{ID}$. Analogously, $\overrightarrow{FX} = \overrightarrow{ID}$.

The equilateral triangles AEF and ZYX are similar and equally oriented, and under the parallel translation by vector $\overrightarrow{EY} = \overrightarrow{FX}$, points E and F map to points *Y* and *X*, respectively. Thus, point *A* maps to point *Z*, $\overrightarrow{AZ} = \overrightarrow{EY}$, and therefore $AZ \perp BC$.

Fig. 3

 ${\bf 3.}$ Given an acute triangle ABC . Squares $AA_1A_2A_3,$ $BB_1B_2B_3$, and $CC_1C_2C_3$ are positioned such that the lines A_1A_2 , B_1B_2 , and C_1C_2 pass through points *B*, *C*, and *A*, respectively, and the lines A_2A_3 , B_2B_3 , and C_2C_3 pass through points *C*, *A*, and *B*, respectively. Prove that

a) the lines AA_2 , B_1B_3 , and C_1C_3 are concurrent;

b) the lines AA_2 , BB_2 , and CC_2 are concurrent.

(*Mykhailo Plotnikov*)

Solution. a) The lines B_1B_3 , AA_2 , and C_1C_3 contain the bisectors of the right angles ∠BB₁C, ∠BA₂C, and ∠BC₃C, so all of them pass through point A', the midpoint of the semicircle constructed on BC as a diameter outside triangle ABC (Fig. 4).

b) Let A' , B' , and C' be the midpoints of the semicircles with diameters BC , AC , and AB , constructed outside triangle ABC . From part a), line A_1A_3 passes through points B' and C' , and line AA_2 passes through point A' . Since $A_1A_3^\top \perp AA_2$ as the diagonals of a square, line AA_2 contains the altitude of triangle $\overline{A'B'C'}$. The lines BB_2 and CC_2 also contain the altitudes of triangle $A'B'C'$, so the lines AA_2 , BB_{2} , and CC_{2} meet at the orthocenter of this triangle.

Fig. 4

4. On a semicircle with diameter AB, a point C is chosen arbitrarily. Let P and Q be points on segment AB such that $AP = AC$ and $BQ = BC$, and let O and *H* be the circumcenter and orthocenter of triangle *CPQ*, respectively. Prove that for all possible positions of point C , line OH passes through a fixed point.

(*Mykhailo Sydorenko*)

Solution. We will show that line *OH* always passes through point *N*, the midpoint of the semicircle with diameter AB (Fig. 5).

First, we prove that ∠PCQ = 45°. Indeed, from the isosceles triangles ACP and *BCQ*, we obtain that $\angle QPC = 90^\circ - \frac{1}{2}\angle CAB$ and $\angle PQC = 90^\circ - \frac{1}{2}\angle CBA$, so

$$
\angle PCQ = 180^{\circ} - \angle QPC - \angle PQC =
$$

= 180^{\circ} - (90^{\circ} - \frac{1}{2}\angle CAB) - (90^{\circ} - \frac{1}{2}\angle CBA) =
= \frac{1}{2}(\angle CAB + \angle CBA) = 45^{\circ}.

Hence, $\angle POQ = 2\angle PCQ = 90^\circ$, and POQ is an isosceles right triangle. But ANB

is also an isosceles right triangle, so triangles ANB and QOP are homothetic.

Since triangles ACP and BCQ are isosceles, $AO \perp CP$ and $BO \perp CQ$, implying *AO* || *QH* and *BO* || *PH*. Thus, triangles *AOB* and *QHP* are also homothetic. Consequently, there exists a homothety that maps triangles ANB and AOB onto triangles *QOP* and *QHP*. This homothety maps segment *NO* onto segment *OH*, and since these segments share a common point, they lie on the same line. Thus, line *OH* always passes through point *N*.

Fig. 5

5. Given a scalene triangle ABC, with the incenter I marked, and the points of tangency of the incircle with sides BC , AC , and AB marked as $K^{}_1, K^{}_2,$ and $K^{}_3,$ respectively. Using only a ruler, construct the circumcenter of triangle ABC.

(*Hryhorii Filippovskyi*)

Solution. The construction consists of two steps.

Step 1. Find the midpoints of the sides of triangle M_1 , M_2 , and M_3 .

Method I. Let *D* be the intersection point of lines $K_1 K_3$ and *CI*. We will show that *D* lies on line M_2M_3 (Fig. 6). Since $\angle K_1DC = \angle K_3K_1B - \angle ICB = \frac{A+C}{2} - \frac{C}{2} =$ $\frac{A}{2}$ = ∠*K*₃*AI*, points *A*, *I*, *D*, *K*₃ lie on the same circle. Hence, ∠*IDA* = ∠*IK*₃*A* = $\frac{1}{2}$ 0°. Let line *AD* intersect *BC* at point *F*. Then *CD* is the angle bisector and altitude of triangle *ACF*, so this triangle is isosceles. Hence, *D* is the midpoint of AF , and therefore lies on line M_2M_3 . Now let E be the intersection point of lines $K_1 K_2$ and *BI*. This point also lies on $M_2 M_3$, so line DE intersects AB and AC at points $M^{}_3$ and $M^{}_2$. Similarly, construct line $M^{}_1M^{}_2$ to find point $M^{}_1.$

Method II. Let D be the intersection point of lines K_1I and K_2K_3 (Fig. 7). We will show that line AD passes through point $M^{}_1$. To do this, draw segment $EF \parallel$ *BC* through point D ($E \in AB$, $F \in AC$) and show that D is the midpoint of EF . Indeed, quadrilateral AK_2IK_3 is inscribed in a circle with diameter AI , so \angle *IK*₃*K*₂</sub> = \angle *IK*₂*K*₃ = $\frac{A}{2}$ *A 2 2 EX*₃*I* $\angle E K_3 I$ $\equiv \angle EDI$ $\equiv 90^\circ$ **, points** *E***,** *K***₃,** *D***,** *I* **lie** on the same circle, and similarly points *I*, *D*, *F*, K_2 lie on the same circle. Thus, $∠IED = ∠IK₃D = ^A/₂ = ∠IK₂D = ∠IFD$. Hence, triangle *IEF* is isosceles, and its altitude *ID* is the median. Similarly, construct points M_2 and M_3 .

Step 2. Construct the perpendicular bisectors of the sides of the triangle. Let G be the intersection point of AM_{1} and M_2M_3 , and P the intersection point of $M^{}_1 M^{}_3$ and CG (Fig. 8). Then segments M_3G and GM_2 are the midlines of triangles M_1PC and BAM_1 , so $PA \parallel$ *BC*. Let *Q* be the intersection point of $K_1 I$ and *PA*, *S* the intersection point of $M^{}_1\mathrm{Q}$ and $M^{}_2M^{}_3$, and T the intersection point of K_1S and *PA*. It is easy to verify that M_1K_1QT is a rectangle, so $M_1T \perp BC$. Similarly, construct the perpendicular bisector of another side to find the circumcenter of triangle ABC.

6. Given a scalene triangle ABC. Through point B, a line ℓ is drawn that does not intersect the triangle and forms distinct angles with sides AB and BC. Let M be the midpoint of AC , and let H_a and H_c be the feet of the perpendiculars

drawn from points A and C to $\ell.$ The circumcircle of triangle MBH_{a} intersects AB at point A_1 , and the circumcircle of triangle MBH_c intersects BC at point C_1 . Point A_2 is symmetric to A with respect to point $A_1^{}$, and point $C_2^{}$ is symmetric to *C* with respect to point C_1 . Prove that the lines ℓ , AC_2 , and CA_2 are concurrent. (*Yana Kolodach*)

Solution. Extend AH_a such that $H_aN_a = AH_a$ and CH_c such that $H_cN_c = CH_c$ (Fig. 9). Observe that lines BC and BN_c are symmetric with respect to ℓ , so points $A,$ $B,$ and N_c are not collinear. Let the circumcircle of triangle ABN_c intersect ℓ again at point *E*.

Fig. 9

We will show that line AC_2 passes through point $E.$ Indeed 1,

$$
\angle N_c AE = \angle N_c BE = \angle N_c BH_c = \angle H_c BC_1 = \angle H_c MC_1.
$$

Since MH_c and MC_1 are the midlines of triangles ACN_c and ACC_2 , respectively, we have

$$
\angle N_cAC_2 = \angle H_cMC_1 = \angle N_cAE,
$$

so line AC_2 passes through point $E.$ Similarly, line $A^{}_2C$ passes through the intersection point of the circumcircle of triangle $N_a BC$ with line ℓ , distinct from $B.$ But triangles ABN_c and N_aBC are symmetric with respect to line ℓ . Hence, the circumcircle of triangle N_aBC also intersects line ℓ at point E , completing the proof.

¹This reasoning corresponds to the configuration depicted in Fig. 9; in other cases, the arguments will be analogous.