8TH GRADE

1. Let BE and CF be the medians of an acute triangle ABC . On the line BC , points $K \neq B$ and $L \neq C$ are chosen such that $BE = EK$ and $CF = FL$. Prove that $AK = AL$.

(*Heorhii Zhilinskyi*)

Solution 1. Let AA_1 *,* EE_1 *, and* FF_1 *be the altitudes of triangles ABC, BEK,* and *CFL*, respectively (Fig. 1). Since $EE_1 \parallel AA_1 \parallel FF_1$, it follows that EE_1 and FF_1 are the midlines of triangles AA_1C and AA_1B . Denote $BF_1 = F_1A_1 = x$ and $A_1E_1 = E_1B = y$. Since triangles BEK and CFL are isosceles, E_1 and F_1 are midpoints of BK and CL, respectively. Therefore, $E_1 K = BE_1 = 2x + y$, $LF_1 = F_1C = x + 2y$, and hence $LA_1 = A_1K = 2x + 2y$. Thus, in triangle KAL, the height AA_1 is also the median, which implies $AK = AL$.

Solution 2. Extend *BE* to a point *N* such that $EN = BE$, and extend CF to a point *M* such that $FM = CF$ (Fig. 2). Then *ABCN* and *ACBM* are parallelograms, so $MA = BC = AN$, $MA \parallel BC$, and $AN \parallel BC$. Hence, $MN \parallel BC$ and A is the midpoint of MN . In triangle BNK , the median KE equals half of the side BN , so this triangle is right-angled. Thus, $NK \perp BC$, and similarly, $ML \perp BC$. It follows that $KLMN$ is a rectangle. Since A is the midpoint of MN , the right triangles ANK and AML are congruent by two legs, and therefore $AK = AL$.

2. Let *I* be the incenter and *O* be the circumcenter of triangle *ABC*, where $\angle A \angle B \angle C$. Points P and Q are such that AIOP and BIOQ are isosceles trapezoids $(AI || OP, BI || OQ)$. Prove that $CP = CQ$.

(*Volodymyr Brayman and Matthew Kurskyi*)

Solution. The diagonals of an isosceles trapezoid are equal, so $IP = AO =$ $BO = IQ$ (Fig. 3). We will prove that $\angle CIP = \angle CIQ$. From this, it follows that triangles CIP and CIQ are congruent by SAS theorem, which implies $CP = CQ$.

Let $\angle A = \alpha$, $\angle B = \beta$, and $\angle C = \gamma$, where $\alpha < \beta < \gamma$. In the isosceles triangle AOC, the angle at the vertex is 2β , and the base angle is

$$
\angle CAO = 90^\circ - \beta > 90^\circ - \frac{1}{2}(\beta + \gamma) = \frac{\alpha}{2} = \angle CAI.
$$

Similarly, ∠CBO = 90° – $\alpha > \frac{\beta}{2} = \angle BCI$. Therefore, point O lies inside angle AIB, and points P and Q lie inside angles AIO and BIO , respectively. Consequently,

$$
\angle CIP = \angle CIA + \angle AIP
$$
 and $\angle CIQ = \angle CIB + \angle BIQ$.

Since ∠CIA = 90 $^{\circ}$ + $\frac{\beta}{2}$ $\frac{p}{2}$ and from the isosceles trapezoid ∠AIP = ∠OAI = $\angle CAO - \angle CAI = 90^\circ - \tilde{\beta} - \frac{\alpha}{2}$, we find that

$$
\angle CIP = 90^{\circ} + \frac{\beta}{2} + 90^{\circ} - \beta - \frac{\alpha}{2} = 180^{\circ} - \frac{\beta}{2} - \frac{\alpha}{2} = 90^{\circ} + \frac{\gamma}{2}
$$

Similarly, $\angle CIQ = 90^\circ + \frac{y}{2}$ $\frac{y}{2}$, which completes the proof.

Fig. 3.

3. Let W be the midpoint of the arc BC of the circumcircle of triangle ABC , such that W and A lie on opposite sides of line BC . On sides AB and AC , points P and Q are chosen respectively so that $APWQ$ is a parallelogram, and on side BC, points K and L are chosen such that $BK = KW$ and $CL = LW$. Prove that the lines AW , KQ , and LP are concurrent.

(*Matthew Kurskyi*)

.

Solution. Let $\angle BAC = 2\alpha$. Since triangle BKW is isosceles (Fig. 4), we have

$$
\angle BWK = \angle WBC = \angle WAC = \alpha.
$$

Thus,

$$
\angle WKC = \angle BWK + \angle WBC = 2\alpha.
$$

Since $WQ \parallel AB$, it follows that

$$
\angle WQC = 2\alpha = \angle WKC,
$$

which means that quadrilateral $W K Q C$ is cyclic. Similarly, quadrilateral $W B P L$ is cyclic. Therefore, $\angle WPL = \angle WCL = \alpha$ and $\angle KQW = \angle KCW = \alpha$, so $\angle BPL =$ $\angle COK = 3\alpha$.

Since the diagonal of the parallelogram $APWQ$ is the angle bisector of $\angle A$, the figure $APWQ$ is a rhombus. Let the lines PL and QK intersect AW at points D' and D" respectively. Since $AP = AQ$, $\angle PAD' = \angle QAD'' = \alpha$, and $\angle APD' = \alpha$ $\angle A Q D'' = 180^\circ - 3\alpha$, the triangles APD' and $A Q D''$ are congruent. Therefore, $AD' = AD''$, which implies that the points D' and D'' coincide.

Fig. 4.

4. On side AB of an isosceles trapezoid $ABCD$ (AD $||$ BC), points E and F are chosen such that a circle can be inscribed in quadrilateral CDEF. Prove that the circumcircles of triangles ADE and BCF are tangent to each other.

(*Matthew Kurskyi*)

Solution. Let ω be the incircle of quadrilateral $CDEF$, and let $\omega^{}_1$ and $\omega^{}_2$ be the circumcircles of triangles ADE and BCF , respectively. Denote $O,$ $O_{1},$ and O_{2} as the centers of circles $\omega,$ $\omega_1,$ and ω_2 , respectively, and let S be the intersection of lines AB and CD (Fig. 5). The point O lies on the angle bisector of $\angle ASD$, which is the perpendicular bisector of segments AD and BC . Therefore, the points $O₁$ and O_2 also lie on this bisector. We will show that the circles ω_1 and ω_2 pass through point O . Since the centers of these circles lie on the same line with O , it follows that O is the tangency point of ω_1 and $\omega_2.$

Denote $\angle ASD = \alpha$. Then

$$
\angle SAD = \angle SBC = 90^{\circ} - \frac{\alpha}{2}.
$$

Since circle ω is inscribed in triangle *ESD*, we have ∠*EOD* = 90°+ $\frac{\alpha}{2}$ $\frac{\alpha}{2}$. Therefore, $\angle EOD + \angle EAD = 180^{\circ}$, which implies that point O lies on circle ω_1 . Similarly, since circle ω is also the excircle for triangle FSC, we have ∠FOC = 90° – $\frac{\alpha}{2}$ $\frac{\alpha}{2}$. It follows that ∠FOC + ∠FBC = 180°, which means that point O also lies on circle ω_2 .

Fig. 5.

5. On side AC of triangle ABC, a point P is chosen such that $AP = \frac{1}{3}AC$, and on segment BP, a point S is chosen such that $CS \perp BP$. A point T is such that *BCST* is a parallelogram. Prove that $AB = AT$.

(*Bohdan Zheliabovskyi*)

Solution. Extend *BC* beyond point *B* to a segment $BD = DC$, and extend *AC* beyond point A to a segment $AQ = AP$ (Fig. 6). Then $PQ = \frac{2}{3}AC = CP$, so BP is the midline of triangle CDQ. It follows that $DQ \parallel BP$. Since $\overline{B}D = BC = ST$ and $BD \parallel ST$, quadrilateral $BSTD$ is a parallelogram. Therefore, $TD \parallel BP$, which implies that $D - T - Q$ are collinear and $BP \parallel TQ$.

Since $BT \parallel CS$ and $CS \perp BP$, it follows that $PB \perp BT$. Thus, $PBTQ$ is a right trapezoid. Let AH be the altitude of triangle ABT . Then $AH \parallel BP$, and A is the midpoint of PQ. Hence, AH is the midline of the trapezoid $PBTQ$, so H is the midpoint of BT . Consequently, in triangle ABT , the altitude AH is also the median, which implies that $AB = AT$.

9TH GRADE

1. Inside triangle ABC, a point D is chosen such that $\angle ADB = \angle ADC$. The rays BD and CD intersect the circumcircle of triangle ABC at points E and F , respectively. On segment EF , points K and L are chosen such that $\angle AKD = 180^\circ - \angle ACB$ and $\angle ALD = 180^\circ - \angle ABC$, with segments *EL* and *FK* not intersecting line AD . Prove that $AK = AL$.

(*Matthew Kurskyi*)

Solution. Since $\angle AED = \angle ACB = 180^\circ - \angle AKD$, and points *K* and *E* lie on opposite sides of AD , quadrilateral $AKDE$ is cyclic. Similarly, quadrilateral $ALDF$ is also cyclic. Therefore,

 $\angle AKL = \angle ADE = 180^\circ - \angle ADB = 180^\circ - \angle ADC = \angle ADF = \angle ALK$.

Fig. 1.

2. Let M be the midpoint of side BC of triangle ABC , and let D be an arbitrary point on the arc BC of the circumcircle that does not contain A . Let N be the midpoint of AD . A circle passing through points A , N , and tangent to AB intersects side AC at point E . Prove that points C , D , E , and M are concyclic.

(*Matthew Kurskyi*)

Solution. Since $\angle NAE = \angle DAC = \angle DBC$ and $\angle NEA = \angle BAD = \angle BCD$ (Fig. 2), triangles AEN and BCD are similar. Let K be the midpoint of AE . Since NK and DM are corresponding medians in similar triangles, we have $\angle NKE =$ $\angle DMC$. Moreover, NK is the midline of triangle DAE, so NK \parallel DE. It follows that

$$
\angle DEC = \angle NKE = \angle DMC,
$$

and hence points C , D , E , and M are concyclic.

3. Let H be the orthocenter of an acute triangle ABC , and let AT be the diameter of the circumcircle of this triangle. Points X and Y are chosen on sides AC and AB, respectively, such that $TX = TY$ and $\angle XTY + \angle XAY = 90^{\circ}$. Prove that $\angle XHY = 90^\circ$.

(*Matthew Kurskyi*)

Solution. Since *AT* is the diameter, we have $\angle ABT = \angle ACT = 90^\circ$. We will show that the right triangles XCT and TBY are congruent (Fig. 3). Indeed, $XT =$ TY by the condition, and since

$$
\angle CTX + \angle BTY = \angle CTB - \angle XTY = 180^{\circ} - \angle XAY - \angle XTY = 90^{\circ},
$$

it follows that ∠CXT = ∠BTY. Therefore, $CX = BT$ and $BY = CT$.

Additionally, since $CH \perp AB$ and $TB \perp AB$, we have $TB \parallel CH$, and similarly, $TC \parallel BH$. Thus, BHCT is a parallelogram, which implies $BH = CT = BY$ and $CH = BT = CX$.

Let ∠BAC = α . Then ∠BHC = 180° – α . Since ∠ACH = ∠ABH = 90° – α , from the isosceles triangles BHY and CHX , we find

$$
\angle BHY = \angle CHX = 45^{\circ} + \frac{\alpha}{2}.
$$

Thus,

$$
\angle XHY = 360^{\circ} - \angle BHC - \angle BHY - \angle CHX = 360^{\circ} - (180^{\circ} - \alpha) - 2(45^{\circ} + \frac{\alpha}{2}) = 90^{\circ}.
$$

Fig. 3.

4. Let ω be the circumcircle of triangle ABC, where AB > AC. Let N be the midpoint of arc \sim BAC, and D a point on the circle ω such that $ND \perp AB$. Let I be the incenter of triangle ABC . Reconstruct triangle ABC , given the marked points A, D , and I .

(*Oleksii Karlyuchenko and Hryhorii Filippovskyi*)

Solution. Let *NW* be the diameter of circle ω (Fig. 4). Since *DW* \perp *ND* and $AB \perp ND$, we have DW || AB. Therefore, $\sim AD = \sim BW$, which implies $AD =$ BW. By the incenter–excenter lemma, $IW = BW = CW$. Thus the triangle can be reconstructed as follows:

1) extend AI beyond point I by segment $IW = AD$ to obtain point W ;

2) construct the circumcircle ω as the circle circumscribed around triangle ADW;

3) the circle centered at *W* with radius *WI* intersects ω at points *B* and *C*.

5. Let AL be the bisector of triangle ABC, O the center of its circumcircle, and D and E the midpoints of BL and CL , respectively. Points P and Q are chosen on segments AD and AE such that APLO is a parallelogram. Prove that $PQ \perp AO$. (*Mykhailo Plotnikov*)

Solution. If $AB = AC$, the statement is obvious. Henceforth, assume without loss of generality that $\frac{AB}{AC} = t > 1$.

Let T be the intersection of the diagonals of the parallelogram $APLQ$ (Fig. 5). We will prove that PQ is tangent to the circumcircle of triangle TDE . Since triangles TDE and ABC are homothetic, it follows that line PQ is parallel to the tangent to the circumcircle of triangle ABC at A , and thus perpendicular to the radius AO .

Fig. 5.

Let line PQ intersect BC at point F , and let the tangent to the circumcircle of triangle *TDE* at *T* intersect *BC* at point *F'*. We will show that $F' = F$. Both points *F* and *F'* lie outside segment *BC*, so it suffices to prove that $\frac{DF}{EF} = \frac{DF'}{EF'}$ $\frac{DF'}{EF'}$.

By the property of the bisector,

$$
\frac{DL}{EL} = \frac{BL}{CL} = \frac{AB}{AC} = t.
$$

Since $PL \parallel AE$ and $QL \parallel AD$, by the theorem on proportional segments,

$$
\frac{DP}{PA} = \frac{AQ}{QE} = \frac{DL}{EL} = t.
$$

By Menelaus' theorem,

$$
\frac{DP}{PA} \cdot \frac{AQ}{QE} \cdot \frac{EF}{DF} = 1,
$$

which implies that

$$
\frac{DF}{EF} = \frac{DP}{PA} \cdot \frac{AQ}{QE} = t^2.
$$

Since $\angle ETF' = \angle F'DT$, triangles ETF' and $F'DT$ are similar. Therefore,

$$
\frac{TF'}{EF'} = \frac{DF'}{TF'} = \frac{DT}{ET} = \frac{AB}{AC} = t,
$$

and so

$$
\frac{DF'}{EF'}=\frac{DF'}{TF'}\cdot\frac{TF'}{EF'}=t^2=\frac{DF}{EF}.
$$

This completes the proof.

10–11TH GRADE

1. Let *I* and *O* be the incenter and circumcenter of the right triangle ABC $(\angle C = 90^{\circ})$, and let K be the tangency point of the incircle with AC. Let P and Q be the points where the circumcircle of triangle AOK intersects OC and the circumcircle of triangle ABC , respectively. Prove that points C, I, P , and Q are concyclic.

(*Mykhailo Sydorenko*)

Solution. Since *CIK* is a right triangle with a 45° angle, we have $IK = CK$. The quadrilateral $AKPO$ is cyclic (Fig. 1), so

$$
\angle KPC = 180^{\circ} - \angle KPO = \angle KAO = \angle ACO.
$$

Therefore, triangle *KPC* is isosceles, which implies $PK = CK$. Thus, *K* is the center of the circumcircle of triangle CIP . It remains to prove that point Q also lies on this circle, i.e., $QK = PK$. Since $\angle QAP = \angle QOP = \angle QOC = 2\angle QAC$. the line AC is the bisector of $\angle QAP$. Hence, K is the midpoint of the arc $\sim QKP$, and therefore $QK = PK$.

Fig. 1.

2. Let O and H be the circumcenter and orthocenter of the acute triangle ABC . On sides AC and AB , points D and E are chosen respectively such that segment DE passes through point O and $DE \parallel BC$. On side BC, points X and Y are chosen such that $BX = OD$ and $CY = OE$. Prove that $\angle XHY + 2\angle BAC = 180^\circ$.

(*Matthew Kurskyi*)

Solution 1. We will show that $HY = CY$. To do so, construct the perpendiculars $OM \perp AB$ and $YN \perp CH$ (Fig. 2). Since O is the orthocenter of the triangle formed by the midlines of triangle ABC, we have $CH \parallel OM$ and $CH = 20M$. The right triangles *OME* and *CNY* are congruent by one leg and an acute angle ($OE = CY$ by condition, and ∠ $MOE = \angle NCY$ since their corresponding sides

are parallel). Therefore, $CN = OM = \frac{1}{2}CH$. Hence, in triangle CYH , the height *YN* is also a median, so $HY = CY$. Therefore,

 \angle HYX = 2 \angle HCB = 2(90° – \angle ABC) = 180° – 2 \angle ABC.

Similarly, $HX = XB$, so $\angle HXY = 180^\circ - 2\angle ACB$. Thus,

 $\angle XHY = 180^\circ - \angle HYX - \angle HXY = 2\angle ABC + 2\angle ACB - 180^\circ = 180^\circ - 2\angle BAC$.

Solution 2. Let H', X', and Y' be the reflections of H, X, and Y with respect to the midpoint of side BC (Fig. 3). Since $CH \perp AB$, BH $\perp AC$, and BHCH^T forms a parallelogram, it follows that $\angle ABH' = \angle ACH' = 90^{\circ}$, so AH' is a diameter of the circumcircle of triangle ABC. Since $CX' = BX = OD$ and $CX' \parallel OD$, quadrilateral ODCX' is a parallelogram. Therefore, OX' \parallel AC, which implies $\overline{O}X' \perp \overline{CH'}$. Thus, point $\overline{X'}$ lies on the altitude of the isosceles triangle $\overline{O}CH'$ $(OC = OH'$ as radii), so

$$
\angle OH'X' = \angle OCB = \frac{1}{2}(180^\circ - \angle BOC) = 90^\circ - \angle BAC.
$$

Similarly, $\angle OH'Y' = 90^\circ - \angle BAC$, so

 $\angle XHY = \angle X'H'Y' = \angle OH'X' + \angle OH'Y' = 180^{\circ} - 2\angle BAC.$

3. Inside triangle ABC, points D and E are chosen such that $\angle ABD = \angle CBE$ and $\angle ACD = \angle BCE$. Point F on side AB is such that DF || AC, and point G on side AC is such that $EG \parallel AB$. Prove that $\angle BFG = \angle BDC$.

(*Anton Trygub*)

Solution. Let the rays *CD* and *BE* intersect the circumcircle of triangle *ABC* at points P and Q , respectively, and let segment PQ intersect sides AB and BC at points F' and G', respectively (Fig. 4). We will prove that $F' = F$ and $G' = G$.

Since ∠DPF' = ∠CPQ = ∠CBQ = ∠DBF', the points B, P, F', D lie on a circle. It follows that

$$
\angle BF'D = \angle BPC = \angle BAC.
$$

Thus, $DF' \parallel AC$, which implies $F' = F$. Similarly, we have $G' = G$.

From this, it follows that triangles BFG and BDC are similar because $\angle FBQ =$ $\angle DBC$ and $\angle FOB = \angle DCB$. Therefore,

$$
\angle BFQ = \angle BDC.
$$

Fig. 4.

4. Let I and M be the incenter and the centroid of a scalene triangle ABC , respectively. A line passing through point I parallel to BC intersects AC and AB at points E and F , respectively. Reconstruct triangle ABC given only the marked points E, F, I , and M .

(*Hryhorii Filippovskyi*)

Solution. Let *T* be the midpoint of *EF*. Consider two cases.

Case 1. $T \neq M$. Let Q be the intersection of the external bisector of ∠BAC with line EF (Fig. 5). By the angle bisector theorem and the exterior angle bisector theorem, we have

$$
EQ: FQ = AE: AF = EI: FI,
$$

so point Q can be constructed. Since line TM contains the median AD and $\angle QAI = 90^{\circ}$, point A is found as the intersection of TM and the semicircle with diameter QI .

Case 2. $T = M$. The point *I* divides the bisector *AL* in the ratio

$$
AI: IL = AM: MD = 2:1 = (AB + AC): BC = (AF + AE): FE.
$$

Thus, $AF = 2FI$ and $AE = 2EI$, meaning that A is the intersection of circles centered at E and F with radii $2EI$ and $2FI$, respectively.

Once point A is determined, construct point D such that $AD = \frac{3}{2}AM$, and draw a line through *D* parallel to *EF*. This line intersects rays AF and AE at points *B* and C , respectively.

Note. The reconstruction of point A is generally not unique. The conditions may be satisfied by one or both of the constructed triangles ABC .

5. Let $ABCDEF$ be a cyclic hexagon such that $AD \parallel EF$. Points X and Y are marked on diagonals AE and DF, respectively, such that $CX = EX$ and $BY = FY$. Let O be the intersection point of AE and FD , P the intersection point of CX and BY, and Q the intersection point of BF and CE . Prove that points O, P , and Q are collinear.

(*Matthew Kurskyi*)

Solution. Let K and L be the intersection points of BF and CE with AD , and let ω_1 and ω_2 be the circumcircles of triangles AKB and DLC, respectively (Fig. 6). We will show that points O, P, Q lie on the radical axis of circles ω_1 and $\omega_2.$

Since AFED is an isosceles trapezoid, we have ∠ABF = ∠ADF = ∠DAE = $\angle DCE.$ Therefore, AO and DO are tangents to circles ω_1 and ω_2 , respectively, and $AO = DO$. Hence, point O lies on the radical axis of circles ω_1 and ω_2 .

Since $\angle YBF = \angle BFD = \angle BAD$, it follows that BP is tangent to circle ω_1 . Similarly, *CP* is tangent to circle ω_2 . To show that ∠*PBC* = ∠*PCB*, we observe that

$$
\angle PBC = \angle FBC - \angle BFD =
$$

= $\frac{1}{2}(\sim FDC - \sim BCD) = \frac{1}{2}(\sim FED - \sim BC),$

and similarly,

$$
\angle PCB = \angle ECB - \angle AEC = \frac{1}{2}(\sim AFE - \sim BC).
$$

Since \vee FED = \vee AFE due to AD || EF, we conclude PB = PC, so point P lies on the radical axis of circles ω_1 and $\omega_2.$

Finally, points K, L, C, and B are concyclic because $\angle BKL = \angle BFE = 180^{\circ} \angle BCE$. Let this circle be ω_3 . The lines BF and CE are the radical axes of circles $\omega^{}_1,\omega^{}_3$ and $\omega^{}_2,\omega^{}_3$, respectively. Therefore, point Q is the radical center of circles $\omega_1, \omega_2, \omega_3,$ and thus lies on the radical axis of circles ω_1 and $\omega_2.$

Fig. 6.